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New Two-Grid Acceleration Method for Unsteady
Navier-Stokes Calculations

L. He*
Cambridge University, Cambridge, England, United Kingdom

A quasi-three-dimensional time-marching Navier-Stokes method for calculating unsteady viscous flows in
turbomachines is presented. A major feature of the present work is that the time-step limitation in the Navier-
Stokes solutions suffered by all explicit time-marching methods is effectively relaxed by using a time-consistent
two-grid method. The spatial accuracy is subject to the basic fine mesh, while the coarse mesh, on which the
temporal accuracy is guaranteed, is locally applied to the near wall and wake regions to increase the allowable
time-step length. The loss of the time accuracy on the basic fine mesh can be easily controlled by choosing a
suitable grid size of the coarse mesh according to the wavelength of physical unsteadiness to be dealt with. This
two-grid method has been compared with the implicit residual-averaging method and the direct time-marching
method for a transonic escillating cascade flow. Numerical examples for a low-speed oscillating airfoil flow at
a dynamic stall condition and a transonic airfoil flow with a self-excited shock oscillation are also presented, in
which an increase in the time-step length by a factor of 20 has been achieved.

Nomenclature
C = length of blade chord
C, = unsteady pressure coefficient
ds = differential length element with unit

outward-pointing normal vector
= internal energy
= frequency
reduced frequency, (wc/u..)
coefficient of heat conductivity
the unit vectors in x direction
Prandtl number
inlet stagnation pressure
exit static pressure
static pressure
gas constant
entropy
temperature
time
primitive flow variable
velocity in x direction
inlet velocity
velocity in y direction
axial coordinate
= pitchwise coordinate
area of computational cell
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(dx/dt), = moving mesh grid velocity in x direction
12 = laminar viscosity coefficient

M = turbulent viscosity coefficient

p = density

T, = wall shear stress

© = angular frequency

Subscripts

c = coarse mesh

f = fine mesh

i = index of mesh point in y direction
Superscript

n = index of time step
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Introduction

NDERSTANDING and prediction of unsteady viscous
flow effect is of great interest in turbomachinery design

and analysis. Numerical solution methods for unsteady vis-

cous flows are currently under active development. Efficient
methods of coupling an inviscid Euler solver with an integral
boundary-layer solution can be used to predict unsteady vis-
cous blockage effects at attached and slightly separated flow
conditions (e.g., Refs. 1 and 2). But for highly viscous-dom-
inated flow phenomena where massive flow separation exists
(e.g., rotating stall and stall flutter), the Navier-Stokes so-
lutions are required.

The Reynolds-averaged Navier-Stokes solvers are widely
used for prediction and analysis of steady turbomachinery
flows, though their accuracy is limited by the turbulence clo-
sure model. Resolution of thin-viscous layers needs a large
number of mesh points. This itself requires more computing
resources. Moreover, for an explicit time-marching method,
the time-step length is limited by the smallest spatial mesh
size, and therefore, the corresponding CPU time for an un-
steady flow solution in which a uniform time step must be
used would be greatly increased. One can relax the time-step
limitation by adopting an implicit scheme. But extra com-
puting effort must be involved in matrix inversion. The coding
for an implicit method is also more complicated than that for
an explicit one.

Recently, several authors have applied the explicit time-
marching method to calculations of unsteady viscous flows in
turbomachinery.>* The only temporal convergence acceler-
ation method used in these calculations is the implicit residual
averaging which has been widely adopted for steady flow
calculations (e.g., Ref. 5). Although in theory, the length of
time step should be unlimited if the implicit residual-averaging
technique is used, in practice, however, the best convergence
is usually achieved with an increase of the time step by a
factor of 3—5, compared to a direct explicit scheme. It is noted
that the basic idea of the residual-averaging method is to
propagate error waves as quickly as possible, which is highly
desirable if a steady-state solution is pursued. Unlike the con-
ventional implicit solution methods, the discretized formu-
lation of the implicit residual averaging is, however, com-
pletely decoupled from the basic flow governing equations.
Therefore, a gain in a larger time step is always associated
with a loss in a temporal accuracy. The pointis, that the scale
on which the temporal accuracy is lost should be clearly mea-
sured and controlled against the physical wavelength of the
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problems to be modeled. But there seems to be no such a
measure in the conventional residual-averaging method.

In this article, an alternative temporal acceleration method
based on the concept of the multigrid method (e.g., Ref. 5)
is proposed.

Governing Equation, Discretization, and
Boundary Condition

The basic methodology is an extension of the method adopted
in the author’s quasi-three-dimensional inviscid Euler solver
for unsteady flows around oscillating blades.® The present
description will be emphasized on the treatment of the viscous
terms. .

The integral form of the two-dimensional unsteady Navier-
Stokes equations over a moving finite area AA is

oo d{[r-v(2)]n
lo-u(3)]nfa-s

where
p pu pv
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The viscous source term S, can be modeled at different levels
of simplification. In the present work the original form of the
full Navier-Stokes equations is adopted

S, = ﬁ[(Vxnx + VnJ-ds 2)
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The coefficient p is obtained from Sutherland’s law with a
reference viscosity coefficient being calculated from a fixed
Reynolds number at the inlet flow condition. The coefficient
k is connected with the viscosity coefficient for Pr by

Pr = (C,uik)

For laminar flows, the above set of equations together with
the equation of state is readily solvable. For turbulent flows,
the equations in the widely used Reynolds-averaged form
need a turbulence model to close extra stress and heat flux
terms. In the current work, the standard algebraic model of
Baldwin and Lomax” is adopted, from which u, is obtained,
based on the local parameters. The effective viscosity coef-
ficient u + u, and the effective heat conductivity coefficient
C,u/Pr + C,puy/Pry will be used in the calculation. The tur-
bulent Pr,is taken to be 0.9.

By using the 4-stage Runge-Kutta time-wise integration
scheme,> the discretized form of Eq. (1) becomes
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The summation is taken along the arca boundary. The nu-
merical damping term D~ is treated in the same way as in the
previous Euler solution.® The second-order and fourth-order
adaptive smoothing® is used in the streamwise direction: In
the pitchwise direction, only the second-order smoothing?® is
used. This is because some numerical difficulty was found in
implementing the fourth-order smoothing in the pitchwise
direction at the blade wall boundaries.® Similar to the nu-
merical damping term, the viscous fluxes are only updated at
the first stage, which reduces the corresponding viscous part
to first-order time accuracy.

The fluxes across each boundary surface of the finite volume
are evaluated using flow variables stored at the corners of
eachcell (i.e., A, B, C, D in Fig. 1). This.can be easily carried
out for the convective and pressure fluxes. For the viscous
fluxes V,, V,, the spatial derivatives of flow variables must
first be evaluated. Following a method adopted by Liu,’ an
auxiliary cell (a-b-c-d, Fig. 1) around each corner of the orig-
inal cell is introduced. Similar to the discretization for the
governing equations, the spatial derivatives of any flow var-
iable f at the mesh point A can be approximated based on
the Gauss theorem by
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As far as the boundary conditions are concerned, a major
difference between the present solution and the previous Eu-
ler solver® is in the solid wall condition treatment. Two dif-
ferent conditions have been used. The first one is the nonslip

wall condition, in which the velocities are set equal to zero
on the wall, and the wall shear stress is evaluated according
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Fig. 1 Finite computational cells.
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to the local derivatives. The second method is to set the wall
shear stress and allow the velocities to slip. In most cases, the
wall shear stress for turbulent flows can be well-described by
the log-law. An approximate form of the log-law'® is used in
the present calculations

0.03177 + 0.25614
e (Re) [ 2z (Re)]2

T

e~ 0001767 +

u, and p, are velocity and density at mesh points one grid
spacing (normal distance Ay,) away from the wall and R, =
pu Ay, /. For laminar flows, the wall shear stress is simply
evaluated by 7, = u(u,/Ay,). The slip wall condition needs
fewer mesh points in the near wall region than the nonslip
wall condition, and is used in all the numerical examples
presented later, unless otherwise stated.

Two-Grid Time-Marching Method

In a typical H mesh arrangement for unsteady viscous flow
calculations, uniformly spaced mesh points in the streamwise
direction are usually preferred, because unsteady perturba-
tions of interest (e.g., incoming wakes and incoming/outgoing
pressure waves) would have high gradients in any part of the
flow domain. In the pitchwise direction, the mesh spacing in
the mainly inviscid part of the flowfield can be comparable
to that in the streamwise direction, but highly refined mesh
points have to be placed in the near wall and wake regions
to resolve thin viscous layers. The time step is limited by the
smallest mesh size, which is usually the pitchwise length of
the mesh cell adjacent to the wall. The present effort is aimed
at relaxing the time-step limitation so that a usable time step
for an unsteady flow solution would only be subject to the
streamwise mesh size (or the pitchwise mesh size in the mainly
inviscid part).

Consider that we have two meshes for the time-marching
solution. The first mesh is the basic fine mesh on which the
flow variables are stored and the fluxes are evaluated. The
second mesh is a coarse mesh on which each mesh cell contains
several pitchwise cells of the fine mesh. Let us denote the
area of a cell on the fine mesh as AA,, and the area of a cell
onthe coarse as AA,. An example of the two-grid arrangement
is given in Fig. 2, in which the first big cell with area AA_,
contains three small cells with area AA;,, AA;,, AA.;, and the
second big cell with area AA,, contains two small ones with
area AA;,, AA.;.

For simplicity, we now consider only one-stage temporal
integration over a fixed computationai cell. If evaluated on a
cell of the fine mesh as in a direct time-marching solution,
the temporal change of flow variables is

(Ur*t — U™, = (At/AAPR, 4
AAfs | AA¢2 = AAgy + AArs
B —
¥ AA gy

ﬂ AAgy :
' | | AA1=AAf A +AA
A — AAp cl f1 2 f3
yC A@/
i AA,

1

- X

Fig. 2 Twe-grid mesh arrangement.

where R, = Z[(V, — F)Ay + (V, — G)Ax] . The summation
is taken along the boundary of the small cell on the fine mesh
with area AA. While if the temporal change is evaluated on
a big cell of the coarse mesh with area AA_, which contains
AA;, we have

(Ur=t = U"), = (AL/AA)R, &)

where R, = Z[(V, — F)Ay + (V, — G)Ax],. The summation
is taken along the boundary of the big cell on the coarse mesh.

The time step At is limited by the mesh size of the coarse
mesh, and therefore, can be much larger than At. Suppose
we want to run an unsteady solution with a uniform time step
At, which on the fine mesh gives a Courant number CFL,
much larger than CFL,, the one dictated by the numerical
stability. The idea is that the temporal integration for a given
mesh point should be formulated in such a way as if the
solution were time-marched first on the fine mesh up to its
stability limit Af;, and then on the coarse mesh using Az to
make up the desired time step Az. Thus

(Un+1 _ Un) — (Un+1 —_ Un)f + (Un+1 _ Un)c
= (A,/AA)R, + (At /AA)R.

The time-step length on the fine mesh As is limited by the
numerical stability

At; = At(CFL,/CFL)
In order to match the given uniform time-step length Ar after
each time step, the time-step length on the coarse mesh Af,
must be determined for the time consistence

At, = At — At = [1 — (CFL/CFL)]At

Therefore, we have

R, CFL R CFL
n+l _ ny — _f X0 < _ 0
w U = sa, o M7 aa <1 CFL) At
(6)

In practice, the ratio of the CFL numbers is approximated by
the ratio between the pitchwise grid size of the local fine mesh
Ay, and that in the mainly inviscid part of the flowfield, Ay g,
which limits A¢. And the pitchwise mesh size of the coarse
mesh Ay, should be chosen to be as close to Ay as possible.

The implementation of this two-grid method is very simple
because of conservation relations for both areas and fluxes.
First, the net fluxes for small cells on the fine mesh are eval-
uated. The net fluxes for a big cell on the coarse mesh can
be directly obtained by a simple summation

Neell

R.= > R,

1

Neoy is the number of small cells contained in the big cell.
Then the temporal change for each small cell can be evaluated
by using Eq. (6). In the present calculations, Eq. (6) is applied
at each stage of the four-stage Runge-Kutta integration.
For a steady flow solution, this two-grid scheme is equiv-
alent to a direct solution on the fine mesh, because the re-
sidual, which drives the solution, is formed based on the net
fluxes on the fine mesh. For an unsteady flow solution, the
time-wise accuracy on the fine mesh is certainly no longer
guaranteed. The loss in the temporal accuracy depends on
the local ratio between fine and coarse mesh sizes. In the
mainly inviscid flow region far from the wall, the two-grid
scheme will reduce to the basic time-marching scheme because
CFL,/CFL = 1. It should be pointed out that the maximum
length scale on which the temporal resolution is lost would
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be the mesh spacing length on the coarse mesh. As long as
the coarse mesh spacing is taken to be much smaller than the
physical wavelength of interest, this loss in time accuracy
would be acceptable. Hence, a good balance between effi-
ciency and accuracy can be realized.

Validations

Steady Flat Plate Laminar Boundary Layer

The basic methodology and implementation were first val-
idated by calculating a steady flat plate laminar boundary layer
at an incompressible flow condition, for which the analytical
similarity solution (the Blasius velocity profile) can be com-
pared. For this laminar boundary layer case, the nonslip wall
condition was used. The calculated velocity profile is com-
pared with the Blasius solution, as shown in Fig. 3. Apart
from a slightly underpredicted velocity level in the middle
part of the profile due to the numerical smoothing, the agree-
ment is excellent.

Transonic Oscillating Cascade Flow

Itis considered very useful that the present two-grid method
should be compared against the implicit residual-averaging
method and the direct time-marching solution at a typical
unsteady flow condition of interest. For this reason, the stan-
dard implicit residual-averaging method (e.g., Ref. 5) was
also implemented. As stated earlier, only the restriction upon
the time step by the pitchwise mesh size is of concern. Thus,
the residual averaging is only applied in the pitchwise direc-
tion. The basic formulation is (e.g., for density)

(1 — 8,))8p; = Ap; )

where Ap; is the nonaveraged temporal change (residual) in
a pitchwise cell i, and Ap; is the averaged one. §,, is the second-
difference operator in the pitchwise direction. The smoothing
coefficient ¢ is given by

¢ = 3[(CFL/CFLy)* ~ 1]

The following discretized form is adopted:
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Fig. 3 Blasius similarity velocity profile.

The above implicit residual-averaging method was applied at
each stage of the Runge-Kutta integration. It was found by
numerical tests that the time step could be increased by a
factor of 3-4, compared to the direct solution. Convergence
rate would deteriorate rapidly if a larger time step was used.

A transonic oscillating cascade flow was calculated as a test
case. The cascade geometry was typical of a transonic fan tip
section. The blade was of a biconvex profile with a chord
length of 0.1 m, a chord/pitch ratio of 1.3, a maximum thick-
ness of 2%, and a stagger angle of 50 deg. The inlet Mach
number was 1.1, Reynolds number was 5 X 10°, and the back
pressure (P,/P;) was 0.64. The flow was assumed to be fully
turbulent from the leading edge.

Figure 4 shows the computational mesh (38 X 61). The
calculated steady flow Mach number contour is given in Fig.
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Fig. 4 Computational mesh (38 X 61) for transonic cascade.

Fig. 5 Steady Mach number contour for transonic cascade.
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5, which shows the passage shock with an upstream Mach
number about 1.25. The ratio between the pitchwise mesh
size in the middle passage and that adjacent to the wall, which
limited the time step in the direct time-marching solution, was
3.5/1. In both the two-grid and the residual-averaging solu-
tions, the time step adopted was 3.5 times as large as that
used in the direct solution.

The unsteady flow was induced by the cascade oscillating
in a torsion mode around the midchord with an amplitude of
0.3 deg, a frequency of 560 Hz (K = 1.1) and an interblade
phase angle of 0 deg. The calculated first harmonic unsteady
pressure distributions using the two-grid method, the residual-
averaging method, and the direct time-marching method, are
shown in Fig. 6. It is noticed that the two-grid method and
the implicit residual-averaging method gave almost identical
results, and both agreed well with the direct solution.

For this case, the extra CPU time required by the two-grid
method was 9% compared to the direct solution, while that
by the implicit residual averaging was 19%. It must be pointed
out, however, that in the two-grid solution, only three big
pitchwise cells with the numbers of the small cells in each big
cell being 3, 3, 2, were locally used in each of the two near
wall regions, because only eight cells in the near wall region
were nonuniformly distributed. So the total number of cells
involved in the computation for each pitchwise mesh line was
16. While the implicit residual averaging method was applied
across the whole passage, i.e., 37 cells were involved in the
computation for each pitchwise mesh line. The computing
effort in the middle passage region, where the pitchwise mesh

— Two-Grid Solution
aa  Residual Averaging
oo Direct Time-Marching
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Suction Surface
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Fig. 6 Unsteady pressure distribution.

points were uniformly distributed, was in fact, wasted. Taking
this into account, the actual increases in CPU time for both
the two-grid method and the residual-averaging method should
be comparable.

Oscillating Airfoil Flow with Dynamic Stall

One of the highly viscous-dominated unsteady flows phe-
nomena around a lifting surface is dynamic stall, which has
been well-reported for flows around helicopter airfoils with
large oscillation amplitudes (~10 deg). In a recent wind-tun-
nel experiment with a single airfoil oscillating at a relatively
small amplitude (2 deg), a dynamic stall phenomenon with a
marked negative aerodynamic damping at a time-mean inci-
dence 10-15 deg was also clearly observed.!' This experi-
mental case was chosen here to test the ability of the present
method to predict the dynamic stall.

The airfoil was the NACA-65 profile with 10% thickness.
Although the experiment was conducted at a very low-velocity
condition (inlet flow velocity = 25 m/s), the calculation was
performed at a Mach number about 0.3, which gave better
convergence for the time-marching solution. The two impor-
tant parameters, the Reynolds number and the reduced fre-
quency of the imposed vibration mode, were kept the same
as those in the experiment. The inlet Reynolds number was
2.6 x 10°. The time-mean incidence was 10 deg.

Figure 7 shows the computational mesh (100 X 96) with a
pitchwise mesh spacing adjacent to the wall being % of that
in the middle. The corresponding time step used in the present
two-grid calculation was about 15 times as large as that for a
direct time-marching method. According to the experimental
observation, the suction surface was assumed to be turbulent
from the leading edge, and the pressure surface was assumed
to be laminar. In order to take the tunnel wall viscous effect
into account, turbulent boundary layers on the upper and
lower tunnel walls were introduced in the calculation from
the streamwise position of the airfoil leading edge.

The calculation was first performed at the steady flow con-
dition with the airfoil being stationary. However, it was found

T
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Fig. 7 Computational mesh (100 X 96) for NACA-65 airfoil.
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Fig. 8 Time-history of static pressure (90% chord of NACA-65 airfoil
under steady conditions).
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that a steady flow solution could not be obtained. The suction
surface static pressure at the location of 90% chord is plotted
in Fig. 8 against the number of time steps with the flowfield
starting with a one-dimensional initial guess. This static pres-
sure trace indicates a natural (self-excited) periodic vortex
shedding with a reduced frequency about 0.54. However, no
clear evidence for the natural vortex shedding at the same
scale could be found in the experimental data.

A calculation was then carried out with the same imposed
airfoil vibration mode as in the experiment. The airfoil was
set to oscillate in torsion around its axis at 42% chord, with
a reduced frequency of 0.67. The flow angle, defined as the

a) wt = 0 deg

T

b) wt = 36 deg

e

¢) wt = 72 deg

%

d) wt = 108 deg

e) wt = 144 deg

angle between the chord line and the inlet flow direction
changed in the form of

a = 10 deg + 2 deg sin wt

The calculated flowfield became very periodic with the fre-
quency of the imposed vibration mode after four periods. This
implies that the previous natural (self-excited) vortex shed-
ding mode was now locked to the imposed vibration mode.
Figure 9 shows entropy contours at different instants in one
period of the airfoil oscillation. Because the entropy is a con-
vective property, the contour lines closely follow the flow

h) wt = 252 deg

i) wt = 288 deg

J) ot = 324 deg

Fig. 9 Entropy [exp(S/R)] contours (interval = 0.015).
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particles and give a good indication of vortex movements. As
we can see, a leading-edge separation is noticeably enhanced
at wt = 36 deg. A marked leading-edge vortex is formed and
transported downstream to the trailing edge between wt =
72 deg and wr = 216 deg. Once the big vortex reaches the
trailing edge, it interacts with the wakes at the trailing edge,
and as a result, a secondary vortex with opposite vorticity is
induced (Fig. 9h). Both the primary and the secondary vor-
tices are finally shed from the trailing edge, and the flow
pattern then becomes attached as that at wt = 0 deg. The
calculated dynamic stall process agrees qualitatively with the
experimental observation.!? However, the scale of the pri-
mary vortex during its downstream movement was consid-
erably overpredicted. The calculated unsteady pressure am-
plitude on the suction surface near the trailing edge was at
least twice as large as the corresponding measured results.
Besides, there was no-indication of the secondary vortex in
the experimental data.

The reasons for these discrepancies are not very clear. One
possible reason is that the turbulence model adopted might
not be adequate for the present low-speed flow with massive
separation. This aspect concerning the turbulence modeling
will be further investigated in the future.

Self-Excited Shock Oscillation

Under certain transonic flow conditions, an interaction be-
tween a shock and boundary layer around an airfoil trailing

e

a) wt = 0 deg

b) wt = 36 deg
>
\
L wrad
c) wt = 72 deg

e) wt = 144 deg

Fig. 10 Computational mesh (120 X 121) for biconvex airfoil.

e

Sl

Fig. 11 Static pressure contour (biconvex airfoil).

vacd

i) wt = 288 deg

j) ot = 324 deg

Fig. 12 Mach number contour (interval = 0.05).
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edge can generate an unstable aerodynamic mode leading to
a periodic self-excited shock oscillation. A detailed experi-
ment for a transonic biconvex airfoil flow was carried out by
Yamamoto and Tanida,'? in which a well-defined self-excited
shock oscillation was observed. This unsteady flow case was
also chosen here for validating the present method.

The computational mesh (120 x 121) is shown in Fig. 10.
The outlet of the computational domain was taken about one
chord downstream of the trailing edge. The long duct ar-
rangement downstream of the test section in the experiment
was modeled by using the one-dimensional nonreflecting out-
let boundary conditions.'® According to the experiment, the
boundary layers on both upper and lower airfoil surfaces were
assumed to be turbulent at 10% chord from the leading edge.
On the upper and lower tunnel walls, no experimental infor-
mation about the boundary layers was available. The corre-
sponding tunnel wall viscous effect was approximately taken
into account by introducing turbulent boundary layers on both
walls at the same streamwise location as the leading edge. It
should be mentioned that the maximum pitchwise mesh size
ratio was 20, which, by using the present two-grid method,
gave a time step 20 times as large as that in a direct time-
marching solution. This means that in the present calculation,
anet gain in CPU time savings by a factor of 18 was obtained.

The calculation was first performed at a back pressure of
P,/P, = 0.67 and a Reynolds number of 1 x 10°. Figure 11
shows the calculated static pressure contour before the flow
becomes unstable, which is roughly of a symmetrical pattern.
As the solution was further time marched, the flowfield be-
came apparently asymmetrical, and a well-defined periodicity
was established in about 6000 time steps, corresponding to

0.
180.
ot (degree)
360.
540.
720.
0.0 0.5 1.0 1.5 2.0
xb
a) Present calculation
Y/b=0. 5
~180 [~ —
e —7
A =
Phase® o 2060 /
T 0.6 0'675\
) 0\\'\
180 . 625
360° <
B‘Ays
540 S0/ /)
5.5 1.0 1.5
X

b) Measurement

Fig. 13 Space-time contour of static pressure (b = 0.5¢, f = 600
Hz).

about four periods of the self-excited oscillation. Figure 12
gives Mach number contours at different instants in one os-
cillation period. The detailed analysis of the corresponding
mechanism was given by Yamamoto and Tanida.'®* A space-
time contour of static pressure (P/P,) along a mesh line in
the middle of the upper half computational domain is given
in Fig. 13a, and the corresponding experimental result (P,/
P, = 0.668) is given in Fig. 13b. The time scale in terms of
wt in the S-T plot for the calculated result is based on a
frequency of 600 Hz, which was the self-excited oscillation -
frequency measured in the experiment at the same back pres-
sure condition. The calculated mean shock position was fur-
ther downstream than that shown in the experimental result,
which might be mainly due to three-dimensional effects. The
comparison between the experiment and the calculation shows
a very good agreement in frequency. The agreement in rel-
ative phase (the absolute phase is arbitrary) is also fairly good.
The amplitude of the shock oscillation, however, was over-
predicted by about 60%. A similar phenomenon was also
found by Yamamoto and Tanida.’® The present calculation
was then carried out at the back pressure conditions of P,/P,
= 0.66 and P,/P, = 0.68. The calculated self-excited oscil-
lation frequency at P,/P, = 0.66 was about 830 Hz, and that
at P,/P, = 0.68 was about 500 Hz. These calculated fre-
quencies also agree well with the corresponding experimental
data.

It should be pointed out that the present calculations agree
well with the calculations for this case by Yamamoto and
Tanida'®* who used the implicit approximate factorization
method' and the same Baldwin-Lomax turbulence model as
used in the present method.

Concluding Remarks

An explicit Navier-Stokes time-marching method for cal-
culating unsteady viscous flows in turbomachinery has been
developed. The four-stage Runge-Kutta time-wise integration
and the cell-vertex finite-volume spatial discretization were
adopted. The Baldwin-Lomax algebraic model was used for
the turbulence closure.

A major feature in the present work is that the time-step
limitation suffered by the explicit methods is very effectively
relaxed by using a new two-grid method. In this two-grid
method, the spatial resolution is subject to the basic fine mesh.
In order to achieve a large usable time step for unsteady
viscous flow calculations, a coarse mesh, on which the tem-
poral resolution is maintained, is locally applied to the near
wall and wake regions. The most inaccurate temporal reso-
lution occurs on the smallest mesh cell, and the length scale
on which the time accuracy would be lost is the mesh size of
the coarse mesh. Therefore, by choosing a suitable spacing
for the coarse mesh against the physical wavelength of the
unsteady flow problems to be modeled, the loss in the time-
wise accuracy can be clearly controlled. Compared to the
conventional implicit residual-averaging method, the present
two-grid method has a more physically sound base and is
easier to implement. With a similar amount of extra CPU
time to the implicit residual-averaging method, a much larger
time step can be used. Therefore, a very good balance be-
tween accuracy and efficiency can be achieved for unsteady
viscous flow calculations.

Calculated results for a transonic oscillating cascade at a
typical frequency of interest are in good agreement with those
by using the direct time-marching and the implicit residual
averaging. A dynamic stall phenomenon has been predicted
for a highly loaded oscillating airfoil in a low-speed wind
tunnel, but calculated results only correlate with the corre-
sponding experiment in a qualitative sense. Finally, a calcu-
lation has been carried out for a transonic flow around a
symmetrical airfoil and the calculated asymmetrical self-ex-
cited shock oscillation agree well with the corresponding ex-
perimental data. Also, in this case, an increase of the time
step by a factor of 20 (a net payoff on CPU savings by a factor
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of 18), compared to the direct time-marching solution, has
been achieved. :
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